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The motion of a flat body towards a parallel plane surface in incompressible fluid is 
considered both in the presence and absence of an applied force for a non-vanishing 
initial velocity. In the inviscid limit, a first integral of the equations is obtained and 
analytic solutions are presented for the cases of finite body inertia with zero applied 
force and finite applied force with negligible body inertia. In the former case when 
the ratio of body inertia to fluid inertia is large, a singular behaviour is observed in 
the arrest of the body before impact wherein the time-dependent pressure and radial 
velocity of the fluid exhibit a sharp peak and there is a large transfer of kinetic energy 
from the body to the thin fluid layer. For a real fluid, a general procedure is described 
to obtain solutions a t  arbitrary Reynolds number for naturally occurring initial 
velocity conditions. Solutions to the full Navier-Stokes equations are obtained for an 
arbitrary Reynolds number based on gap height which are valid provided the flow 
remains laminar and the gap height is small. In general, the equations of motion of 
the body and fluid are both dynamically and kinematically coupled. The dynamic 
coupling, however, is removed when the body inertia is neglected. In  particular, the 
cases of hydrodynamic arrest with zero applied force, and draining of the fluid under 
a constant applied force are considered. The natural initial conditions lead to a new 
exact similarity solution of the Navier-Stokes equations which is valid for an 
instantaneous time-dependent Re based on gap height of greater than approximately 
100, wherein the top and bottom boundary layers remain distinct. The longer time 
portions of the motion and the final arrest are described by a numerical calculation 
for intermediate Reynolds number and a low-Reynolds-number analysis. 

1. Introduction 
The draining of a fluid layer in the hydrodynamic collision of an object with a 

boundary underlies a diversity of physical phenomena associated with filtration, 
coagulation and biological applications. In virtually all of the studies to date, these 
interactions have been treated either in the viscosity-dominated limit, where particle 
and fluid inertial effects can be ignored, or in the inviscid limit where all real-fluid 
effects are omitted. The vast majority of analyses in the viscous limit have been 
based on either the quasi-steady Stokes equation in the limit of zero Reynolds 
number or lubricating-layer theories where the Reynolds number based on gap 
height is small and all inertial effects in the fluid layer can be neglected. The latter 
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approximation has been used in the recent theory of Davis, Serayssol & Hinch 
(1986), the first analysis that attempts to address the difficult problem of the 
elastohydrodynamic collision and rebound of solid particles from a wall in a viscous 
fluid. 

Depending on the initial velocity of the particle, the Reynolds number based on 
the instantaneous height of the fluid gap can take very large values where inertial 
effects are dominant or very small values during collision when the fluid gap is very 
narrow. The problem of the near-collision approach, however, has an important 
simplification in that the boundary geometry in the region of near contact will be 
nearly parallel, at least for a blunt object, and the boundaries may be flattened by 
elastic deformation. Therefore, important'insights can first be obtained by examining 
the fully nonlinear problem for the simple inelastic parallel wall geometry. For 
mathematical simplicity, we consider an object with a flat circular bottom moving 
towards a parallel plane surface, as shown in figure 1,  and we will assume that the 
initial gap height h, is much smaller than the disk radius a. The fluid motion in the 
gap can be visualized as a time-dependent axisymmetric double stagnation-point 
flow. 

The problem described has already been studied in the case where the body is 
dropped from rest near the plane and falls under the action of a constant normal 
force. (Weinbaum, Lawrence & Kuang 1985; Lawrence, Kuang & Weinbaum, 1985. 
These papers will hereinafter be referred to  as WLK 1 and LKW 2.) In  the present 
paper, we are interested primarily in the motion of a body approaching from far 
away under the influence of its own inertia and fluid inertia. For a viscous fluid, there 
will be dissipation of energy and, in the absence of elasticity or an applied force, the 
body will come to rest without recoil a t  some distance from the plane. In  WLK 1 and 
LKW 2,  the choice of a static initial condition limits the range of solutions available. 
In  the current paper the initial velocity will be arbitrary, enabling us to examine the 
relative importance of the applied force and the initial momentum of the body and 
fluid. 

It was shown in WLK 1 that the parallel wall geometry leads to a separation of 
the radial coordinate in the equations of motion. This separation is the time- 
dependent equivalent of the separation found by Homann (1936) for a steady 
axisymmetric stagnation-point boundary layer. It is interesting that analogous 
forms exist for the two-dimensional version of this problem (Secomb 1978) and for 
the fluid motion in a tube that contracts uniformly along its length (Uchida & Aoki 
1977). In  each case, there is stagnation flow a t  the origin of coordinates, the 
streamwise velocity is proportional to the streamwise coordinate, and the 
perpendicular velocity is independent of the streamwise coordinate. I n  all these 
problems the number of independent variables is reduced by one and the reduced 
equations lead to exact numerical solutions of the Navier-Stokes equations. 
Yang (1958) showed that for a time-dependent two-dimensional stagnation-point 
flow, a further simplification can be obtained if the outer flow has the special 
dimensionless form 

u, = - 
l-at' 

I n  this case a similarity solution is found and the number of independent variables 
is further reduced, so the flow is determined in terms of a function of a single variable. 
Uchida & Aoki (1977) found that a particular time-dependence of the tube radius 
also leads to a similarity solution; in fact this also leads to a streamwise velocity 
like (1).  However, these two solutions have no special physical interpretation ; the 

X 
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FIGURE 1. The geometry and coordinate system for a flat body near a plane. 

time-dependence is introduced artificially as a mathematical convenience in the 
solution. We will show that a similar solution arises naturally in the present problem 
and that it has a simple physical interpretation. 

When the governing equations are cast in dimensionless form, we find that in the 
general case there are three dimensionless parameters governing the motion, These 
are 

p = 2  4mh y=" V 2  
7cpa4 ' W i '  

holwol Re, = -, 
V 

in which v and p are the kinematic viscosity and density of the fluid, and m and 
w, are the mass and initial velocity of the disk. V, is a velocity scale based on the 
initial gap height and the characteristic inertial time required to drain the fluid under 
an applied force %A which includes gravity 

The first parameter is the Reynolds number based on the initial gap height, the 
second parameter is the ratio of the contribution to the dynamic equation of the 
inertia of the body to that of the inertia of the fluid, and y is the ratio of the applied 
force to the pressure force induced by the inertia of the fluid. Re, may be very small 
for microscopic particles or quite large for larger particles (e.g. for a large snowflake 
hitting a window Re, z lo3). is typically < O(1) for liquids and €or small gap 
height, but may be large for solid particles in a gas (e.g. for a penny dropped in a 
puddle of water /3 % but for the snowflake hitting a window p x lo2). Finally, 
y depends on the nature of the problem ; if there is no applied force y is zero, if there 
is no initial velocity y is infinite. 

The equations of motion will be treated in the inviscid limit for all values of p and 
y .  In particular when ,!3 is large, it  will be shown that a large pressure builds up 
rapidly in the fluid gap. This is very significant for elastic bodies, because a large 
portion of the kinetic energy could be stored, leading to recoil of the body. For real 
fluids with finite Re,, we shall consider two problems : ( a )  the near-collision arrest of 
an object driven solely by inertia in the absence of an applied force and ( b )  the 
modification of this flow when an applied force is present, with inertia playing a 
subsidiary role. 

We define a time-dependent Reynolds number, which leads to a single solution 
curve that is valid for the entire range of Reynolds numbers from the initial value 
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to zero a t  final arrest. This solution is divided into three parts. The first part is a 
boundary-layer solution valid for Re, > O( 100) which is an exact similarity solution 
when p = 0, the second part is a numerical solution for O(O.l) < Re, < O( 100) and the 
third part is a low-Reynolds-number analysis. Amongst other things, this solution 
predicts the ultimate position of rest of the body in the absence of an applied 
force. 

2. Governing equations 
The equations of motion for the body and fluid were derived in WLK 1. A slightly 

different notation is used here but the derivation is not included. The fluid velocity 
is given by u = Iw,lrF,, w = -21w,lF in terms of a dimensionless stream function 
P(z,  t )  and the initial velocity of the disk w,. The initial gap height h, is used as a 
lengthscale, and the timescale is chosen to be h,/lw,l. In dimensionless form, the 
governing equations are 1 

with when t = 0 F = Fo(z), h = 1, h, = - 1 ,  ( 5 )  

o n z = O  F = 0, F, = 0, (6) 

on z = h(t) Fz = 0,  h, = -2F. (7)  

In  many cases, it may be difficult to specify the initial stream function F,(z), but we 
shall see that a 'natural' form for F, is generated in some circumstances. 

3. Inviscid solution 
If the initial Reynolds number is very large, the effects of viscosity will be confined 

in space to thin boundary layers and in time towards the end of the motion. For a 
large part of the motion the inviscid equations will give a good representation of the 
solution. The differential equations (4)-(7) can be satisfied by taking F = @ ( t )  x to 
give 

with 

Equation (10) requires that 

@,+@'=ph,,+y 

h, = -2h@ 

h = l ,  @ = $  whent=O. 

F,(z) = i.2. 
Now in inviscid flow, the instantaneous stream function is determined uniquely by 
the boundary conditions, so if the boundary conditions are to hold a t  the initial 
instant, then F, must have the form of (1  1) .  Alternatively, we may regard F,(z) as an 
unknown function which we have determined as part of the solution. 

We eliminate @ from (8) using (9) to give 

Equation (12) was derived in WLK 1 with a different scaling so that y was replaced 
by unity, and solved subject to the initial conditions h = 1 and h, = 0. It was 
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integrated numerically for representative values of p and an analytic solution was 
given for /3 = 0 (cf. case (ii) below). 

Since (12) does not contain t explicitly, we can obtain a first integral by introducing 
J(h)  = $h,2, so that J = dJ/dh = h,,. Then we have 

3 J  - 2hy 
h( 1 + 2ph) = w’ J’- 

This equation is of standard form and has the solution 

2y [4p‘( 1 - h) + 4p log 1 + 1 - 1 I}. ( 14) 
J ( h )  = h3 (-7 1+2p {I+ 

1+2ph 2 (l+2p)3 h h  

Now h, = -(2J(h))i, so we have formally 

t = 1: [2J(x)]-idx. 

This integral is not amenable to analytical calculation in the general case, but may 
be evaluated in the following special cases. 

Case (i) y = 0, p =t= 0 
In this case J ( h )  reduces to 

So we have 

From (9) and (16) @ is given by 

Solutions (17) and (18) are shown in figures 2 (a )  and (b )  respectively. 
The dimensionless hydrodynamic force on the disk is Ph,,, which is proportional to 

F H ( t )  and the pressure at  the centre of the underside of the disk, po( t ) .  From (16) we 
have 

The solutions for @ (which is proportional to radial velocity) and h,, shown in figure 
2(b and c )  are of particular interest. We see that both @ and h,, are strongly 
dependent on p. For small p, h,, (or the fluid pressure) decays monotonically as does 
the radial velocity. For large ,8, the force is relatively small except for a short time 
near t = 1, when the body is rapidly brought to a stop by a very large force, which 
approaches a unit impulse as p-+ 00. The force comes from the large pressure 
generated under the body by the large radial velocities which arise as the gap 
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FIGURE 2.  Inviscid solutions case (i) y = 0:  (a )  h( t ) ,  (b )  @ ( t ) ,  (c) htt. 
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becomes very narrow. This is evident from the comparison of the ,8 = 50 curves in 
figure 2 ( b  and c) where the maxima of the h,, and Q, curves are coincident. If (8) is 
multiplied by h,, the right-hand side is immediately recognized as the time derivative 
of the kinetic energy of the body ; the time integral of this term is the work done by 
the body in transferring its own kinetic energy to the surrounding fluid. When p is 
small, most of the kinetic energy is contained in the fluid which has a chance to 
escape a t  the edge of the body and there is only a minor transfer of kinetic energy 
to the fluid in the gap before final arrest. For large p, however, the escaping fluid 
contains only a small portion of the total kinetic energy with the result that very 
large accelerations and dynamic pressures can be built up in the near collision or 
impact region. This behaviour has important implications for the collision and recoil 
of an elastic body which are discussed in the concluding section. 

Case ( i i )  ,8 = 0, y + 0 

In this case the equation for 0, (8), becomes decoupled from h, so it is easier to 
proceed directly. This problem has different solutions depending on the value of y. 

If y =a ,  then @ =  $, (20) 

If y < a, then @ = yi coth [yi(t+c)] (21) 

with c = y-i coth-'(4y)-;. ( 2 2 )  

If y > a, then Q, = ya tanh [yf(t+c)] 

with c = y-; tanh-'(4y)-i. 

(23) 

(24) 

We use (9) to find the respective solutions for h: 

cosech2 [yi(t +c) ]  ? < a ,  h =  
cosech2 (cyi) ' 

sech2 [y"t + c)] 
y > 4 ,  h =  

sech2 (cyi) ' 

These solutions for h and Q, are shown in figure 3 (a, 6 ) .  Comparison of figures 2 (a, 6 )  
and 3 (a,  6 )  clearly shows the difference between draining behaviour under a force due 
to body inertia and a constant applied force such as gravity. For a constant applied 
force with y > 4 the radial velocity asymptotically approaches a constant value for 
which the dynamic pressure force in the fluid gap just balances the applied force. The 
radial velocity cannot, therefore, exhibit a local maximum as a function of time, nor 
can there be a pressure overshoot when p = 0. 

Case ( i i i )  /3 = 0, y = 0 
This is the simplest case of all ; we immediately find 

and 

1 
@ = -  

t + 2 '  

h=-- -4@2 
(t  + 2)2 

These results are included in figures ( 2 )  and (3). 
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FIGURE 3. Inviscid solutions case (ii) /3 = 0 :  (a) h(t) ,  (b )  @ ( t ) .  

4. Solution procedure for the viscous case 
There are two main problems of interest in solving (4). The first is the 

hydrodynamic arrest by viscous dissipation of a moving body approaching a solid 
boundary, where the driving force for the motion is the initial momentum of the body 
and fluid. The second problem is that of complete draining of the fluid in the gap 
under the action of a constant applied force. The solution procedure for these two 
problems is outlined below. 

4.1. Hydrodynamic arrest 

The body will come to rest before reaching the plane only if there is no applied force, 
i.e. we must take y = 0. We are left with a two-parameter family of solutions for 
different values of ,8 and Re,,. The initial stream function F,(z) is unknown, but it 
must reflect the previous history of the motion and the instantaneous Reynolds 
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number based on gap height when the solution is started. If Re, and the initial gap 
height are large, we would expect F,(z) to be very close to the inviscid solution found 
in 93, except for the presence of thin boundary layers on the top and bottom walls. 
On the other hand, for smaller values of Re, we would expect the velocity profile 
F,, to be more or less parabolic. We consider for the moment the solution for a given 
value of p and a large Re,. On physical grounds, we expect both the dimensionless 
gap height h and the descent rate lhtl to decrease monotonically as the motion 
progresses. We can define a time-dependent Reynolds number, Re ( t )  = Re, h(h,l, 
which will decrease monotonically from Re, to zero during the motion. When Re, is 
very large we could, for example, choose the inviscid flow as a realistic initial 
condition, but when Re, is not large, the form of the initial condition is not obvious. 
However, a suitable candidate is available in the form of the instantaneous solution 
for large Re, at the appropriate time when Re ( t )  has the desired value. This solution 
will be a good choice for the initial stream function provided that it is independent 
of the large value used for Re,. In  this way, the solution exhibits a similarity 
behaviour in which the initial profile depends on Re,. 

The above argument provides us with two benefits. First, the initial condition 
chosen for the stream function is, in a sense, the most natural one, Secondly, we need 
only one solution of the problem to cover the whole range of Re, a t  a given /3. To 
obtain the solution for smaller Re, , we simply discard the portion of the solution with 
Re ( t )  > Re, and rescale the remaining portion of the motion to give unit initial 
conditions. 

4.2. Draining under a constant force 
When a force is applied, the body will not come to rest until it is in contact with the 
plane, a process which takes an infinite time. There are two cases which are of 
particular interest : (i) the body is dropped from rest, and (ii) the body arrives from 
‘far away’ with non-zero initial velocity. In  both cases, the velocity scale is 
determined by the applied force, so we use the velocity scale V, given by (3). If we 
redefine the Reynolds number so that Re, = Re, yi = h, V,/v and define ia, = - y-t, 
then we have 

(30) 

where h = 1, h, = a,, F = F,(z) a t  t = 0. (31) 

Fz,+B~-2FF,,-= Fzz* - - /fh,,+l, 
Re, 

Equation (30) is the same as (4) with y = 1. The only difference is in the initial value 
of h,. It is clear then that, by replacing y by zero or unity in (4), we can solve the 
two problems of major interest, provided we allow a little more flexibility in the 
initial value of h,. Thus we do not need to consider arbitrary values of y in (4). 

In  case (i) when the body is dropped from rest, both a, and F,(z) are zero. The 
solution of (30) is essentially different for each combination of Re, and /3, so the full 
two-parameter family of solutions is needed. This case was the basis of the studies in 
WLK 1 and LKW 2 and we shall not discuss it further. 

In case (ii) the initial condition is unspecified and, as in 94.1 above, we must find 
the initial stream function as part of the solution ; we must also find the appropriate 
value of ao. The time-dependent Reynolds number for this problem is E(t) = 
Re, h2( t ) ,  since V, is proportional to h,. The behaviour is qualitatively the same as that 
for the problem in 94.1 and the same method of solution may be applied. For a given 
value of p ,  we take Re, to be very large and use the inviscid solution as the initial 
condition. The sequence of states with smaller Re ( t )  then gives the initial conditions 
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for each smaller value of Re,. Again only one solution of the problem is needed to  
cover the whole range of Re, for a given /3, 

The solution method outlined above enables us to simplify the range of parameters 
and starting conditions for the solution. lnstead of a three-parameter family of 
solutions with unknown initial conditions, we only need to find two one-parameter 
families of solutions for the two problems of $$4.1 and 4.2. The extra degrees of 
freedom have been removed by choosing the most convenient (and realistic) initial 
conditions. In addition, the equations for F and h decouple when /3 = 0. This will 
enable us to find new boundary-layer-type similarity solutions to the Navier-Stokes 
equations in which the inviscid outer flow has a meaningful physical interpretation. 
This simplification is not possible for non-zero p ;  in this case the solutions require 
much more numerical computation, so we shall only present results for /3 = 0. 

In LKW 2, it was indicated that the similarity boundary-layer solution for the 
problem of $4.2 is simply a steady stagnation-point flow, because the inviscid core 
flow is constant (cf. (20)). Since the solution is so simple and the methods are 
contained in those for the problem of $4.1, WLK 1 and LKW 2, the calculations will 
not be shown here. Graphical results will be presented a t  the end of the following 
section for comparison with the problem of $4.1. 

5. Hydrodynamic arrest with small /3 
As discussed earlier, the parameter /3 represents the ratio of the forces due to the 

inertia of the body to those due to the inertia of the fluid. It might, therefore, appear 
unreasonable to consider the case /3 = 0 for hydrodynamic arrest because if we 
neglect both the inertia of the body and the applied force there is no apparent forcing 
in the problem. However, if the gap is sufficiently small, the fluid within it may have 
a large radial velocity so that the momentum possessed by the fluid a t  the initial 
instant is much larger than that of the body which is moving much more slowly in 
the axial direction. Thus, the forcing in the problem comes from the initial conditions 
and there is no contradiction in examining the limit /3 = 0. 

The solution of this problem has three components - an exact similarity boundary- 
layer solution for large Re, or Re(t), a numerical solution for intermediate Re,, or 
Re ( t )  and a low-Reynolds-number solution. 

5.1,  Boundary-layer solution 
The 'outer' inviscid flow is given by 

F = ( z - S ( t ) )  @(t ) ,  
with &(t )  defined by 

S ( t )  = l:"( 1 -$) dx. 

@(t )  satisfies (8) with /3 and y equal to zero, cf. (28), whose solution is 

1 
@=-, 

t f c ,  

(32) 

(33) 

(34) 

in which cl is an arbitrary constant to be determined f;om the initial condition. The 
boundary-layer scaling is F = Re;if(c, t )  with 6 = R e i z .  Equations (4)-(7) are re- 
placed bv 
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where f = O ,  f c = O  o n ( = O ,  (36) 

Equations (35)-(38) describe a time-dependent axisymmetric stagnation-point 
boundary-layer flow which is analogous to the two-dimensional form studied by 
Yang (1958). The particular form of @ (34) allows us to find a time-dependent 
similarity scaling : 

Then we derive the similarity problem: 
f = @ig(y) with 7 = @+ 5. (39) 

g”’ + 299” - 9’2 + kg” + g’ = 0, (40) 

where g = O ,  g ’ = O  o n q = 0  (41) 

and g‘+1 asq-tco.  (42) 
We define the number d by 

d = 1: (1-g’)dq = lim (7-9) = 0.601 159. (43) 
7-f“ 

Then 6 = Re;; @-+ d.  (44) 

h, + 2h@ = 46@ = 4d Re;: &. 

The equation for h(t) becomes 

(45) 

This has the solution 

We now apply initial conditions (5) to h to get 

C: = (47) 

and c2 = &c,2(1+2c,). (48) 
For large Re,,, we have c: x 2, c2 x 4. To find the correct sign for c1 in (47), we use 
(34) and (45) to obtain 

(49) @ ( O )  = l/c, = ht(0)/(46(0)-2h(0)) = l/(2-46(0)). 

This shows that c1 = 2-46(0) < 2, so we choose c1 = c;. 
The apparently difficult time-dependent boundary-layer problem has been greatly 

simplified by the use of ‘natural’ initial conditions. The above solution is exact 
whenever there are distinct boundary layers. The function g’ is within of unity 
a t  7 = 4 and it is convenient to take this as the edge of the boundary layer. At the 
time when 7 = 4 corresponds to z = ih, we have 4 = @iReiih, i.e. Re, @h2 = 64. Now 
for large Re (t), h, x -2h@, so Re ( t )  M 2Re, @h2. Hence the boundary-layer solution 
is valid whenever Re (t) > 128. This estimate is very conservative and the solution is 
still quite accurate a t  lower Reynolds numbers. 
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5.2 .  Numerical solution 
We take Re, = 128 and use the boundary-layer solution to (40)-(42) as the initial 
condition. First, (40) for g(7) is integrated up to z = 1 using a shooting method with 
interval halving to find g"(0) and a fifth-order Runge-Kutte-Verner method of 
integration. To avoid large errors a t  the symmetry boundary z = t, the derivative 
of the stream function is taken to be Fz(z) Fz(l - z ) ,  with z = [Re, @(O)]-;y. 

The moving boundary is inconvenient for numerical integration and we introduce 
a new scaled coordinate x = z/h(t)  which is constant a t  z = h. We also define a scaled 
velocity U = F ,  = F x / h  whose time derivative is 

The boundary conditions in terms of these new scaled variables are 

F = 0 ,  U = O  on x = 0, (51) 

U x  = 0, h, = -4F on x = i. (52) 

The space dimension is now discretized so that x is restricted to the values x I ,  I = 1,  
..., n with x1 = 0, xnP1 = 0.5 and X ~ - - X ~ - ~  = Ax = 0.5 / (n-2) .  It is advantageous to 
choose n-2 = 2m, so that Ax may be doubled without needing to interpolate. For our 
problem n = 130 was adequate to keep the error below The discretization leaves 
a set of n f l  ordinary differential equations for U ,  and h. We represent the 
derivatives of U and F by finite differences accurate up to O(Ax4) and then explicitly 
evaluate the Ax4 terms to give a conservative estimate of the error. When the 
estimated error is very small, the space step Ax can be doubled to speed up the 
integration. Equations (50)-(52) rewritten in the discretized variables are integrated 
forward in time as far as is necessary using the aforementioned Runge-Kutte-Verner 
method. 

The truncation and integration errors for each time derivative are controlled to a 
relative magnitude of lOp5t until the absolute value falls below 10-9 when an 
absolute error of lO-'t is allowed. This estimate is very conservative, so the results 
can be regarded as very accurate. In  fact, the integration need only be carried up to 
moderate values of t ,  since then Re ( t )  is very small, and the low-Reynolds-number 
analytic theory described next can be applied. 

5.3.  Low-Reynolds-number solution 
The long viscous timescale Re, t used in WLKl is inappropriate for this problem since 
there is no forcing and the flow would be identically zero. In the low-Reynolds- 
number limit, the inertial forces are tiny, so this part of the motion is just a rapid 
deceleration to zero flow, i.e. the actual arrest of the body. We introduce a short 
timescale t = Re,?. Then we have 

Fz = 0, h, = -2Re,F on z = h ( ~ ) ,  (55)  

h = 1, h, = -Re,, F = F,(z) when 7 = 0. (56) 
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A suitable form for Fo(z) is to be determined. We notice that h, is small, so h will 
remain close to unity and therefore pose asymptotic expansions of the form 

h(7; Re,) - 1 +Re, k1(7) + Re: k2(7) ,  

F(z ,  7 ;  Re,) - P,(z, 7) + ReoFl(z, 7) + ReiP2(z, 7). 

(57) 

(58)  

Fozzz -Fa27 = 0, (59) 

where Fo = 0, Poz = o on z = o (60) 

and F,, = 0 on x = 1. (61) 

The zero-order problem is - - 

- 

The boundary condition has been 'moved' to z = 1 by expanding in a Taylor series 
about x = 1. The general solution to  (59)-(61) is 

(62) 

The a, are to be determined from the initial condition. The solution is very strongly 
damped and after a short while it will be dominated by the leading term. Hence the 
'natural ' initial condition is 

2 2  
W 

Po = x a ~ l -  cosnnz) e-% '. 
1 

Po = a,( 1 - cos nz) when 7 = 0, (63) 

and the solution is then 
Po = a,(i - cos nz) e47 .  

The first-order problem for h is 
- - 
h,, = -2F, on z = 1 

= -4al e-n2T. 

Thus 

The second initial condition is 

AIT = - 1 when 7 = 0. 

a Therefore we have 1 4 '  

The next-order problem is - - - - -  
FIZZ, -Fu, = F:z -2FoFo,z, 

with Pl = 0, Flz = o on z = 0, (71)  

Plz+h"lPozz = o on z = I .  (72) 

(70) 

The forcing in (70) has time-dependence e-2xaT which is very strongly damped. Hence 
the only important contribution is of the same form as (64), forced by the (1 - cos 
nx)-term in the initial condition and by (72). However, we can arrange that this term 
is zero by absorbing any contribution into the zero-order solution. Hence we can 
neglect the first- and higher-order corrections to F .  Thus, we have 

1 
(73) h = I--, ( 1 - e - ~ 2 7 ) ~ e 0 + ~ ( ~ e ; ) ,  

n 
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FIGURE 4. Viscous evolution of velocity profiles with p = 0: (a )  motion driven by inertia $4.1, 
( b )  constant applied force $4.2. 

and the final position of the disk is given by 

(74) h, = 1 -- Re,+O(ReE). 

It seems that the numerical coefficients will become smaller with increasing powers 
of Re,, so we may estimate the error in (74) as roughly &Re:. Then we have five-figure 
accuracy provided Re, < Hence the numerical calculation must be continued 
until Re ( t )  = 

An unusual feature of the above solution is that the velocity profile ultimately 
takes on the shape of a half sine wave rather than the more usual parabolic form 
which occurs in the problem of $4.2 where the fluid drains under a constant applied 
force. The evolution of the velocity profiles from boundary-layer-type to low 
Reynolds numbers is shown in figure 4(a, 6 ) ;  the most noticeable difference is that the 
inviscid core flow decays with time in the problem of $4.1, whereas it is constant in 
the problem of $4.2 where the velocity decay is caused solely by the overlap of the 
viscous boundary layers. 

The effect of Re, or Re, on the descent of the body is shown in figure 5(a, b). Each 
figure is obtained from a single solution curve (for Re, or Re, = lo6) which is rescaled 
to give several different values of Re, or Re,. It is clear that  all the curves in figure 
5(b) asymptote to zero, since the applied force will ultimately drain all the fluid. 
When there is no applied force, the body is arrested away from the plane, and this 
is clearly shown in figure 5 (a). The matching of the three phases of solution $$5.1,5.2, 
5.3 is shown in figure 6 (a, b ) .  This matching is very good for the problem of $4.2 with 
a constant force, the numerical phase of solution being virtually unnecessary. The 
deviation from boundary-layer-type behaviour is much more rapid in the problem of 
$4.1 since the velocity decays rapidly as inertia is overcome by viscosity. Finally, 
figure 7 shows the position of rest for the problem of $4.1, h,, as a function of Re,. 
At low Reynolds number, the motion is rapidly damped and the body hardly 
moves, whilst for large Re,, the inertia carries the body close to the plane before 
viscous forces take over. 

1 
I? 

This occurs a t  t M 8.5. 
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FIGURE 5 .  (a )  The effect of Re,, on the arrest process. ( b )  The effect of Re, on the 
draining process. 

6. Concluding remarks 
Equation (4) contains three parameters Re,, /? and y ,  and we have indicated the 

solution procedure for every regime. Numerical results have been presented in the 
inviscid limit Re, --f 00 for either y = 0 or p = 0, and for viscous fluids only for the 
limiting case p+O. The inviscid results clearly indicate that for /3 =l= 0 the finite- 
Re, solutions will depart substantially from the curves in figures 4-7. The effect of 
viscosity on the solutions of $ 3  would be to slow the descent rate in general and to 
damp the singular behaviour for large-/? observed in the solutions for @ and h,, in 
figure 2 (b ,  c ) .  In  the case y = 0, the viscous forces would cause the premature arrest 
of the body before contact as explained in $4. For large-/? the inertia of the body 
provides an important source of energy which must be dissipated by viscous stresses 
before the body comes to rest. The dramatic acceleration of the core flow shown in 
figure 2 (b )  is in sharp contrast to the decelerating core flow of figure 4 (a) .  At high 
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FIGURE 6. Showing the matching of solution phases: $5.1 (.....); $5.2L-); $5.3 (---) 
(a) The problem of $4.1, Re, = 128. ( b )  The problem of $4.2, Re, = 64. 

initial Reynolds number and large p the rapid acceleration of the core flow would still 
occur, leading to the equivalent of the start-up boundary layers that  result from 
impulsively started motions in pipe and channel flows. The subsequent rapid 
deceleration of the fluid in the core would lead to a complicated overshoot in the 
boundary-layer velocity profile and probable instability. At lower initial Reynolds 
number, the effects of viscosity would be felt more quickly; the acceleration of the 
core flow would be damped and the increase in gap pressure would be diminished. 

Real impact problems are further complicated by the elastic deformation of the 
boundaries which can lead to a damped oscillation of the body after near contact as 
discussed by Davis et al. (1986). In the latter theory, which is based on a viscosity- 
dominated lubricating-layer analysis, the inertia of the fluid is neglected and thus 
there can be no transfer of kinetic energy from the body to the fluid in the gap as 
observed in figure 2 (b ,  c ) .  A large inviscid pressure loading in the near-contact region 
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FIGURE 7. The ultimate gap height h,  as a function of Re,,. 

cannot develop and the energy of elastic deformation is completely dissipated by the 
viscous stresses in the fluid layer. The body is incapable of rebound in this viscosity 
dominated limit. In contrast, if the pressure loading leading to elastic deformation 
is largely of an inviscid nature (the high-Re,,, large-P case just discussed), the viscous 
dissipation will not absorb all the elastic recoil energy and the body should be 
capable of rebound. This more complicated problem is currently under study. 

This research was performed in partial fulfillment of the requirements for the 
Ph.D. degree of C. J. Lawrence from the City University of New York. 
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